\qquad Date \qquad Class \qquad Lesson Practice B

6-2
 Properties of Parallelograms

A gurney is a wheeled cot or stretcher used in hospitals. Many gurneys are made so that the base will fold up for easy storage in an ambulance. When partially folded, the base forms a parallelogram. In $\square S T U V, V U=91$ centimeters,
 $U W=108.8$ centimeters, and $m \angle T S V=57^{\circ}$. Find each measure.

1. $S W$
2. $T S$
3. US
4. $\mathrm{m} \angle S V U$
5. $\mathrm{m} \angle S T U$
6. $\mathrm{m} \angle T U V$
$J K L M$ is a parallelogram. Find each measure.

7. $m \angle L$
8. $\mathrm{m} \angle K$
9. MJ
$V W X Y$ is a parallelogram. Find each measure.
10. $V X$
11. $Z W$
12. $X Z$
13. $W Y$

14. Three vertices of $\square A B C D$ are $B(-3,3), C(2,7)$, and $D(5,1)$. Find the coordinates of vertex A.
Write a two-column proof.
15. Given: $D E F G$ is a parallelogram.

Prove: $\mathrm{m} \angle D H G=\mathrm{m} \angle E D H+\mathrm{m} \angle F G H$

Challenge

1.

Answers will vary.
3.

Answers will vary.
4.

Answers will vary.
5. Descriptions will vary.
6. There are six possible dissections.

Problem Solving

1. $90^{\circ}, 90^{\circ}, 85^{\circ}, 95^{\circ}$
2. $75^{\circ}, 75^{\circ}, 72^{\circ}, 72^{\circ}, 66^{\circ}$
3. 54°
4. C
5. J
6. B
7. F

Reading Strategies

1. five
2. Sample answer: pedestrian crossing street signs, front faces of barns
3. four
4. There is an equal number of sides and vertices in polygons.
5. octagon
6. three
7. Sample answer:

8. Sample answer:

Practice A

1. supplementary
2. congruent or parallel
3. parallel
4. bisect
5. congruent
6. 2 ft
7. $4 \frac{1}{2} \mathrm{ft}$
8. 9 ft
9. 105°
10. 75°
11. 105°
12. 6
13. 100°
14. 80°
15.

16. 3
18. 8; 4
17. 2
20. $\frac{1}{6} ; \frac{1}{6}$
21. yes

Practice B

1. 108.8 cm
2. 91 cm
3. 217.6 cm
4. 123°
5. 123°
6. 57°
7. 117°
8. 63°
9. 71
10. 21
11. 10.5
12. 15
13. 30
14. $(0,-3)$
15. Possible answer:

Statements	Reasons
1. $D E F G$ is a parallelogram.	1. Given
2. $\mathrm{m} \angle E D G=\mathrm{m} \angle E D H+$ $\mathrm{m} \angle G D H, \mathrm{~m} \angle F G D=$ $\mathrm{m} \angle F G H+\mathrm{m} \angle D G H$	2. Angle Add. Post.
3. $\mathrm{m} \angle E D G+\mathrm{m} \angle F G D=180^{\circ}$	3. $\square \rightarrow$ cons. $\angle \mathrm{s}$ supp.
4. $\mathrm{m} \angle E D H+\mathrm{m} \angle G D H+$ $\mathrm{m} \angle F G H+\mathrm{m} \angle D G H=$ 180°	4. Subst. (Steps $2,3)$

5. $\mathrm{m} \angle G D H+\mathrm{m} \angle D G H+$ $\mathrm{m} \angle D H G=180^{\circ}$	5. Triangle Sum Thm.
6. $\mathrm{m} \angle \mathrm{GDH}+\mathrm{m} \angle D G H+$ $\mathrm{m} \angle D H G=\mathrm{m} \angle E D H+$ $\mathrm{m} \angle \mathrm{GDH}+\mathrm{m} \angle F G H+$ $\mathrm{m} \angle D G H$	6. Trans. Prop. of
7. $\mathrm{m} \angle D H G=\mathrm{m} \angle E D H+$ $\mathrm{m} \angle F G H$	7. Subtr. Prop. of $=$

Practice C

1. Possible answer: The height of $A B C D$ is $2 b$ and the length of the base is $2 c$, so the area of $A B C D$ is $4 b c$. Because $A B C D$ is a parallelogram, $A B=D C$ and $B C=A D$ and $\angle A$ is congruent to $\angle C$ and $\angle B$ is congruent to $\angle D$. Furthermore, because E, F, G, and H are midpoints, $A E=B E=$ $C G=D G$ and $B F=C F=A H=D H$. So by SAS, $\triangle A E H$ is congruent to $\triangle C G F$ and $\triangle B E F$ is congruent to $\triangle D G H$. Now find the coordinates of the midpoints: $E(a, b)$, $F(c+2 a, 2 b), G(2 c+a, b), H(c, 0)$. The height of $\triangle A E H$ is b and the length of the base is c, so its area is $\frac{1}{2} b c$. The areas of congruent triangles are equal, so the area of $\triangle C G F$ is also $\frac{1}{2} b c$. The height of $\triangle D G H$ is b and the length of the base is c, so its area is $\frac{1}{2} b c$. The area of $\triangle B E F$ is also $\frac{1}{2} b c$. The area of all four triangles is thus $2 b c$. The area of $E F G H$ is the area of $A B C D$ minus the area of the triangles, or $4 b c-2 b c=2 b c$. And the area of $E F G H$ is $2 b c=\frac{1}{2}(4 b c)=\frac{1}{2}$ (area of $A B C D)$.
2. Possible answer: Use the slope formula to find the slope of each side: slope of $\overline{E F}=\frac{b}{a+c}$, slope of $\overline{G H}=\frac{b}{a+c}$, slope of $\overline{F G}=\frac{b}{a-c}$, slope of $\overline{E H}=\frac{b}{a-c}$.
Segments with equal slopes are parallel, so $\overline{E F}$ is parallel to $\overline{G H}$ and $\overline{F G}$ is
parallel to $\overline{E H}$. Therefore $E F G H$ is a parallelogram.
3. 80 books
4. 92 books
5. $9<\ell<15$
6. $x<\ell<3 x$
7. $0<\ell<2 x$

Reteach

1. 10 cm
2. 70°
3. 12 m
4. 10 m
5. 62°
6. 18 m
7. 32°
8. 9 m
9. 36
10. 36
11. 48°
12. 132°
13. $D(0,3)$
14. $N(-2,4)$

Challenge

1. Triangle Sum
2. $m \angle 7$
3. 90°
4. $m \angle 5$
5. 180°
6. 180°
7. $\mathrm{m} \angle C D A$
8. $\mathrm{m} \angle D A B$
9. 360°
10. supplementary
11. supplementary
12. Converse of the Same-Side Interior Angles
13. definition
14. Yes; explanations will vary.
15. No; the puck will have to land in the goal.
16. No; explanations will vary.

Problem Solving

1. $\mathrm{m} \angle C=135^{\circ} ; \mathrm{m} \angle D=45^{\circ}$
2. 15 in .
3. 4.5 ft
4. 65°
5. B
6. H
7. D

Reading Strategies

1. 100 mm
2. 138°
3. 86 mm
4. 42°
5. 138°
6. 12 in .
7. 18 in .
8. 12 in .
9. 24 in .
10. 36 in .
