Properties of Parallelograms:

- both pairs of opposite sides are parallel
- both pairs of opposite sides are \underline{n}
- both pairs of opposite angles are \cong.
- diagonals bisect eacho heR

Given: EFRS is a quadrilateral.
Prove: EFRS is a square.

- All propernes of a parallelogram
- Both a rectzrhombus
- regular quad

To prove that a quad is a rect:
$\rightarrow 4$ right c's (o rall <'s $\underline{\underline{n}}$)
To Prove That a parallelogram is arect: it has at least one right \angle.
QR Code Challenge:
1.

$$
\begin{aligned}
& \text { a.) } A B=18 \\
& \text { b.) } B D=19.8+19.8=39.6
\end{aligned}
$$

Rhombus \qquad
2.

$$
\begin{array}{cc}
w z= & 9 a-6=7 a+1 \quad a(3.5)-6= \\
& 2 a=7 \\
& a=7 / 2 \quad a=3.5
\end{array}
$$

$$
\begin{aligned}
& X V=3(3.5)=10.5 \\
& X Z=10.5+10.5=21
\end{aligned}
$$

$\left.d=\left(x_{i}, x\right)^{2}\right)^{2\left(-1 i^{2}\right)}$ distance formula to see that Re i dananals see
3. pg. 423 \# 28

1. EFGH is \square. EG<compat>N<compat>ᅳ<compat>ᄑF 1. Given
2. $\overline{E F} \cong \overline{H G}$
3. $\square \rightarrow$ opp. sides \cong
4. $\overline{E H}=\overline{E H}$ 3. Reflex Prop. of \cong
5. $\triangle E F H \cong \triangle H G E$ 4. SSS
6. $\angle F E H \cong \angle G H E ~ S . C P C T C$

7. $\angle F E H+\angle G H E$ are $6 . \square \rightarrow$ consec. L's are \cong Supp
 rec's
8. EFGH is a rectangle 8. $\square \omega / 1 r+\longrightarrow$ rect
9. \# is Pg. 423 .

10. Answers may
vary!.
\longrightarrow Find Parallel. in Room.
\qquad
11. Find the measures of the numbered angles in the rhombus $C D G H$.

$$
\begin{aligned}
& S 3+S 3=106^{\circ} \\
& 180 \\
& \frac{106}{74} \quad \frac{166}{2}=53
\end{aligned}
$$

$$
m \angle 3=90^{\circ}
$$

8. Find the value for x that makes this parallelogram a square.

$$
\begin{aligned}
13 x+5.5 & =90 \\
13 x & =84.5 \\
x & =6.5
\end{aligned}
$$

*Part Rhombus!

For 9-10, Determine if each conclusion is valid. Explain in full detail why it is or is not valid.
9. Given: $\overline{E F} \cong \overline{F G}, \overline{E G}$ is perpendicular to $\overline{F H}$

Conclusion: $E F G H$ is a rhombus.
NOT valid. You must
 first know that EFGH is a parallelogram.
10. Given: $\angle A B C$ is a right angle.

Prove: $A B C D$ is a rectangle.
If one $<$ is a right \angle, Thin rect., but you need to know that this is a parallelogram.

