1. Is either of the following equations and identity?
a.) $3 \sin ^{2} x+2 \cos x=3 \cos ^{2} x-2 \sin x$
\rightarrow NO because the graphs of The equations do not appear to be the same.

b.) $\frac{1+\cos x-\cos ^{2} x}{\sin x}=\sin x+\cot x$

The graphs appear to be the same.
\rightarrow Therefore, The equation
 may be an identity.
2. Verify algebraically that: $\frac{1+\cos x-\cos ^{2} x}{\sin x}=\sin x+\cot x$

$$
\sin ^{2} x+\cos ^{2} x=1 \frac{\left(1-\cos ^{2} x\right)+\cos x}{\sin x}=1
$$

$$
\begin{aligned}
\sin x+\cos x=1 & \frac{\sin x+\sin x}{\sin x} \\
\frac{\sin ^{2} x+\cos x}{\sin x} & = \\
\frac{\sin ^{2} x}{\sin x}+\frac{\cos x}{\sin x} & =1 \\
\sin x+\cot x & =\sin x+\cot x
\end{aligned}
$$

3. Simplify $(\sec x+\tan x)(1-\sin x)$

$$
\begin{aligned}
& \left(\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right)(1-\sin x) \\
& \left(\frac{1+\sin x}{\cos x}\right)(1-\sin x) \\
& \frac{(1+\sin x)(1-\sin x)}{\cos x} \\
& \frac{1+\sin x-\sin x-\sin ^{2} x}{\cos x}=\frac{1-\sin ^{2} x}{\cos x} \\
& \frac{\cos x}{\cos x}=\cos x
\end{aligned}
$$

4. Prove that $\frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}$
(1) $\frac{\cos x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x}=$
(2.)

$$
\begin{aligned}
\frac{\cos x}{1-\sin x} \cdot \frac{\cos x}{\cos x} & =\frac{\cos ^{2} x}{\cos x(1-\sin x)} \quad \begin{array}{c}
\text { Pythagorean } \\
\sin ^{2} x+\cos ^{2} x=1
\end{array} \\
& =\frac{1-\sin 2 x}{\cos x(1-\sin x)} \\
& =\frac{(1-\sin x)(1+\sin x)}{\cos x(1-\sin x)}=\frac{1+\sin x}{\cos x}
\end{aligned}
$$

5. Prove that $\sec x+\tan x=\frac{\cos x}{1-\sin x}$

$$
\begin{aligned}
& \frac{1}{\cos x}+\frac{\sin x}{\cos x}=\begin{array}{l}
1-\sin x \\
\frac{1+\sin x}{\cos x}=\frac{\cos x}{\cos x} \frac{\text { from above }}{1-\sin x}
\end{array} \frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x}
\end{aligned}
$$

ThUS, $\sec x+\tan x=\cos x$

Thus, $\sec x+\tan x=\frac{\cos x}{1-\sin x}$
6. Prove that $\csc x(\csc x-\sin x)=\cot ^{2} x$
pythagorean $\csc ^{2} x-\csc x \sin x=$
Identity: $\csc ^{2} x-\frac{1}{\sin x} \cdot \sin x=$

$$
\begin{aligned}
1+\cot ^{2} x & =\csc ^{2} x \\
\cot ^{2} x & =\csc ^{2} x-1 \quad \csc 2 x-1= \\
\cot ^{2} x & =\cot ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& \text { not cross multiplying. } \\
& \text { 7. Prove that } \frac{\operatorname{cscx}}{\cot x} \frac{\cot x}{\operatorname{cscx-\operatorname {sin}x}} \text { it Rue } \& \text { use the } \\
& \csc (\csc x-\sin x)=\cot ^{2} x \longleftarrow \text { from \#6. } \\
& \frac{\csc x(\csc x-\sin x)}{(\cot x(\sin x)}=\cot ^{2} x t \text { done assur have to prove } \\
& \cot x+\csc x-\sin x) \quad \cot x(\csc x-\sin x) \\
& \begin{array}{l}
\text { * Trying torroye } \\
\text { an idientitywlo }
\end{array} \\
& \begin{array}{l}
\text { an fractions. } \\
\text { rato }
\end{array} \\
& \text { fractions. } \\
& \text { not corsilining } \frac{\csc x}{\cot x}=\frac{\cot x}{\csc x-\sin x} \\
& \text { use the }
\end{aligned}
$$

8. Prove that $\frac{\cos x-1}{\cos x+1}=\frac{1-\sec x}{1+\sec x}$ A To Prove an identity (1) $\cos x+1=\frac{1+\operatorname{secx}}{1}$, involving fractions, you need to Prove a different

$$
\begin{aligned}
& (\cos x-1)(1+\sec x)=\cos x+1)(1 \text { it identity not involving fractions } \\
& \cos x+\cos x \sec x-\sec x-1=
\end{aligned}
$$

$$
\begin{gathered}
\cos x+\cos x \sec x-\sec x-1= \\
\cos x+\cos x-1-\operatorname{cosec} x-1= \\
\cos x+x-\sec x-1= \\
\cos x-\sec x=
\end{gathered}
$$

(2)

$$
\begin{aligned}
& (\cos x+1)(1-\sec x) \\
& \cos x+1-\cos x \sec x-\sec x= \\
& \cos x+1-\cos x \cdot \frac{1}{\cos x}-\sec x= \\
& \cos x+1+-\sec x \\
& =\cos x-\sec x
\end{aligned}
$$

Thus, $\cos x-\sec x=\cos x-\sec x$

